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We discuss the high density behavior of a system of hard spheres of diameter d on the
hypercubic lattice of dimension n, in the limit n → ∞, d → ∞, d/n = δ. The problem
is relevant for coding theory, and the best available bounds state that the maximum
density of the system falls in the interval 1 ≤ ρVd ≤ exp(nκ(δ)), being κ(δ) > 0 and
Vd the volume of a sphere of radius d. We find a solution of the equations describing
the liquid up to an exponentially large value of ρ̃ = ρVd , but we show that this solution
gives a negative entropy for the liquid phase for ρ̃ � n. We then conjecture that a phase
transition towards a different phase might take place, and we discuss possible scenarios
for this transition.
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1. INTRODUCTION

A code C is a subset of the binary Hamming space H n
2 = {0, 1}n . The distance

between two points s, t ∈ H n
2 is the Hamming distance d(s, t) = ∑n

α=1(sα +
tα)mod2, i.e. it is given by the number of different bits. We consider the prob-
lem of finding the maximal size A(n, d) of a code C such that the minimum
distance between two points in C is d, that means, denoting by |C | the number of
sequences in C ,

A(n, d) = max[|C || ∀s, t ∈ C, d(s, t) ≥ d]. (1)
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In particular we are interested in the quantity

R(δ) = lim sup
n→∞, d/n→δ

1

n
log2 A(n, d), (2)

where the supremum is taken on all possible sequences of codes such that d/n →
δ. The problem trivializes for δ > 1/2 as the total number of sequences is finite
and R(δ) = 0. An interesting scaling is d/n = 1/2 − εn−α , as for an appropriate
choice of α the number A(n, d) might increase polynomially in n, but this will not
be investigated here. Thus we will restrict to δ < 1/2 in the following.

This problem is relevant for the theory of error correcting codes.(1–6) In
“physics language,” it is the problem of finding the maximum possible density of
a system of hard spheres on the hypercubic lattice. This rephrasing of the problem
has been shown to be useful as it allows to use well known methods borrowed
from the theory of liquids, like the virial expansion.(4)

In this paper we will discuss the behavior of the system at high density, in
order to understand how one can try to compute the maximum density. We will
show that, for large n, the problem closely resembles the problem of hard spheres
in R

n in the limit of large space dimension n. The basic idea is that in this limit the
number of neighbors of a sphere is large, much as it happens in the continuum for
large space dimension. We will then discuss some recent ideas that have been used
in the continuum(7–10) to make some progress in the direction of deriving bounds
on A(n, d).

The best known lower bound on A(n, d) (Varshamov-Gilbert bound) states
that the density ρ = |C |/2n ≥ 1/Vd−1, Vd being the volume of a sphere of radius
d in H n

2 .(1) This bound can be proven from the convergence of the virial series(4)

and gives R(δ) ≥ RV G(δ) = 1 − H (δ), H (δ) being the binary entropy function
(see below). This means that a “liquid phase,” defined by the virial equation of
state, exists at least up to ρVd−1 ∼ 1. We will show that the liquid phase can be
formally continued up to a density ρVd−1 ∼ exp(nκ(δ)) with κ(δ) > 0: this result
correspond to the Frisch-Percus result in the continuum.(7)

However, we find that the entropy of the liquid becomes negative at
ρVd−1 ∼ n. This suggests the possible instability of the liquid towards a dif-
ferent phase, i.e. the existence of a phase transition. We will discuss two different
possibilites. By analogy with the problem in R

n for large n, we conjecture that a
glass transition might be present also in this system. In absence of other phases
(such as “crystalline” phases), this analogy suggests that R(δ) is given by the
Varshamov-Gilbert result, R(δ) = RV G(δ). We will also discuss a different insta-
bility that happens for even d, leading to a first order transition to a phase where
the particles move on a sublattice of H n

2 .
The calculation of the properties of the (eventual) glassy phase requires the

use of the replica method, but this turns out to be more difficult than in R
n so we

leave it for future work.
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The paper is organized as follows: in Sec. 1 we set up the basic notations and
definitions; in Sec. 2 we review the known bounds on R(δ); in Sec. 3 we present
our main results and conjectures on the high density behavior of the system; finally
in Sec. 4 we draw the conclusions and present a summary of our ideas.

2. HARD SPHERES ON THE HYPERCUBE

2.1. Definitions

Let s = (s1, · · · , sn), sα ∈ {0, 1}, be a point in H n
2 . We define the Hamming

distance between two points

d(s, t) =
n

∑

α=1

(sα + tα)mod2. (3)

The number of points at distance i from the origin is Si ≡ ( n
i ) and the volume of

a sphere of radius d centered in the origin is

Vd ≡
∑

t :d(0,t)≤d

1 =
d

∑

i=0

(

n

i

)

. (4)

The interaction potential between two particles in s and t is the hard core potential4 :

U (s, t) =
{

0 d(s, t) ≥ d,

∞ d(s, t) < d.
(5)

The grancanonical partition function(4, 11) is

Zn[z] =
2n

∑

N=0

zN

N !

∑

s1···sN

e− ∑

i< j U (si ,s j ), (6)

the average number of spheres (to be identified with the average size of the code,
|C |) is 〈N 〉 = z ∂ lnZn

∂z and A(n, d) = limz→∞ 〈N 〉. The density is ρ ≡ 〈N 〉 /2n and
it is convenient to define the reduced density

ρ̃ ≡ ρVd−1 = 〈N 〉 Vd−1

2n
, (7)

and

ϕ = 1

n
ln ρ̃. (8)

4 Note that in Ref. 4 a different convention has been used, namely that U = ∞ for d(s, t) = d; we are
using here the convention of Ref. 5 and 6. Then d − 1 has to be replaced with d when comparing our
results with.(4) This distinction is not very important as we will consider the limit d → ∞.
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For n → ∞ and d/n = δ < 1/2 one has

v(δ) = lim
n→∞

1

n
ln Vnδ = −δ ln δ − (1 − δ) ln(1 − δ), (9)

i.e. Vd ∼ Sd = (n
d

) ∼ env(δ), so that

ϕ = 1

n
ln ρ̃ ∼ 1

n
ln ρ + v(δ), ρ ∼ en[ϕ−v(δ)]. (10)

The pair distribution function is given by the average number of particle pairs such
that one particle is in s and the other in t (11):

ρ2(s, t) ≡
〈

∑

i �= j

δs,si δt,s j

〉

≡ ρ2g(d(s, t)) (11)

where the Kronecker δs,t is equal to one if s = t and to zero otherwise. The pair
distribution function g(i) is normalized to have value 1 at large distance (for
n → ∞). We also define h(i) ≡ g(i) − 1 which vanishes at large distance. Note
that the function ρg(d(0, s)) is the probability of finding a particle in the point s,
given that there is a particle in the origin.

2.2. Liquid Phase

The liquid phase is defined by the virial expansion of the partition function
at low densities which converges for ρVd−1 ≤ 1/6e.(4) However, one can try
to perform a continuation of the liquid equation of state below the radius of
convergence of the virial series. For hard spheres in R

3, such a continuation is
possible: approximated expressions are usually obtained by resumming some class
of diagrams of the virial expansion to get a closed integral equation for the pair
correlation function g(i). Well known resummations are the Percus-Yevick (PY)
and the HyperNetted Chain (HNC) ones, and agree well with numerical results.(11)

For hard spheres in R
n it has been shown by Frisch and Percus(7) that in the

limit of large n the virial series is dominated order by order by the so-called ring
diagrams. The resummation of the ring diagrams has been shown to provide a
reasonable analytic continuation of the liquid equation of state up to very large
values of the density.(7) As the latter diagrams are included in the HNC resumma-
tion, the two resummations should be equivalent in the large dimension limit. The
advantage of the HNC resummation is that it leads to a closed expression for the
free energy corresponding to the partition function (6) for any finite n. The HNC
free energy (per particle) is:

�[g] = ρ

2

n
∑

i=0

Si [g(i) ln g(i) − g(i) + 1] + ln ρ − 1 + 1

2ρ2n

∑

p≥3

(−1)pρ p

p
T rh p,

(12)
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where

Trh p =
∑

s1···sp

h(s1, s2)h(s2, s3) · · · h(sp, s1), (13)

and the function g(i) is determined by the stationarity condition δ�
δg = 0 (HNC

equation). We will argue that a solution to the HNC equations (or to similar
approximations to the equation of state of the liquid, that should be equivalent for
n → ∞) exists up to ρ̃ ∼ exp(nκ) with κ > 0, thus defining the continuation of
the liquid equation of state in this region of densities.

2.3. Fourier Transform

To write the last term of the HNC free energy in a more convenient way it is
useful to define the Fourier transform on the hypercube. Define the scalar product
of two sequences as s · t ≡ ∑n

α=1 sαtα (such that s2 ≡ s · s = d(0, s)) and let us
indicate by s + t the sum (modulo 2) of the two sequences. Then if q ∈ {0, 1}n the
Fourier transform of a function h(s) is given by

̂h(q) =
∑

s

(−1)q·sh(s),

h(s) = 1

2n

∑

q

(−1)q·s
̂h(q), (14)

using the property
∑

s(−1)(q1+q2)·s = 2nδq1,q2 the Fourier transform of a function
h(s, t) = h(s + t) is

∑

s,t

(−1)q1·s(−1)q2·t h(s + t) = 2nδq1,q2
̂h(q1),

h(s, t) = 1

2n

∑

q

(−1)q·(s+t)
̂h(q). (15)

Moreover if h(s, t) = h(d(s, t)) (a rotationally invariant function), its Fourier
transform depends only on a ≡ q2 = d(0, q), see Eq. (3), and one has

̂h(a) =
n

∑

i=0

Fn(a, i)h(i),

h(i) = 1

2n

n
∑

a=0

Fn(i, a)̂h(a), (16)

Fn(a, i) =
∑

s:d(0,s)=i

(−1)
∑a

α=1 sα =
min(a,i)
∑

m=max(0,i+a−n)

(−1)m

(

a

m

)(

n − a

i − m

)

= Ki (n, a),
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where Ki (n, a) is a Krawtchouk polynomial.(6, 12) The matrix Fn(a, i) has the
following symmetries that will be useful in the following:

(

n

a

)

Fn(a, i) =
(

n

i

)

Fn(i, a), (17)

Fn(n − a, i) = (−1)iFn(a, i), (18)

Fn(a, n − i) = (−1)aFn(a, i), (19)

Fn(n − a, n − i) = (−1)n−a−iFn(a, i). (20)

It satisfies Fn(0, i) = ( n
i ) and Fn(a, 0) = 1, and can be easily constructed using

the recursion relations

Fn+1(a, 0) = 1,

Fn+1(a, i + 1) = Fn(a, i) + Fn(a, i + 1), a ≤ n,

Fn+1(n + 1, i + 1) = −Fn(n, i) + Fn(n, i + 1). (21)

Using Eq. (15) it is easy to show that

Trh p =
∑

q

[̂h(q)]p, (22)

and the HNC free energy (12) becomes, defining L3(x) = ln(1 + x) − x + x2

2 ,

�[g] = ρ

2

n
∑

i=0

Si

[

g(i) ln g(i) − g(i) + 1
] + ln ρ − 1 − 1

2 ρ 2n

n
∑

a=0

Sa L3[ρ̂h(a)],

(23)
and the HNC equation can be written as(11)

ln g(s) = h(s) − c(s),

ĉ(q) =
̂h(q)

1 + ρ̂h(q)
. (24)

3. KNOWN BOUNDS ON R(δ)

In this section we will review some known bounds on R(δ). Using Eq. (2),
(10), and ρ = 〈N 〉 /2n , R(δ) is related to the maximum density ϕc(δ) of the spheres
by

R(δ) = 1 − H (δ) + ϕc(δ)

ln 2
, (25)

where H (δ) = v(δ)
ln 2 = −δ log2 δ − (1 − δ) log2(1 − δ) is the binary entropy func-

tion. We will use units of ϕ because it will lighten the notation in Sec. 3.
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As discussed in the introduction, the best lower bound for R(δ) (Varshamov-
Gilbert bound(1)) can be obtained by proving the convergence of the virial series.(4)

It turns out that the virial series converges for ρVd−1 = ρ̃ < 1/6e, that means
ϕ < 0 for n → ∞. Thus ϕc ≥ 0 and a lower bound for R is R(δ) ≥ 1 − H (δ).

A trivial upper bound follows from the fact that the total volume occupied by
the spheres is ∼ N Vd/2 and should obviously be smaller than the total volume 2n .
Thus

ρ = N

2n
<

1

Vd/2
∼ e−nv(δ/2) ⇔ ϕ < ϕmax ≡ v(δ) − v(δ/2), (26)

so 1 − H (δ) + ϕmax/ ln 2 = 1 − H (δ/2) is an upper bound for R(δ).
Better upper bounds for R(δ) can be derived by Delsarte’s linear programming

method.(2) In physics language, they follow from the observation that the minimal
requirements for the correlation function g(i) are the following:

i) g(i) = 0 for 0 ≤ i < d, as no pair of particles can be at a distance smaller
than d due to the hard core interaction.

ii) g(i) ≥ 0, ∀i ; this follows from the definition of g(i), see Eq. (11).
iii) ρ̂h(a) ≥ −1, ∀a; this is because the structure factor S(a) = 1 + ρ̂h(a)

is a positive quantity, equal to the average of the square modulus of the
q-component of density fluctuations.(11)

If one is able to find a function g(i) verifying conditions i)-iii) above (that have
sometimes been called positivity conditions, see e.g., Ref. 10) for a given value
of ρ, one can compute the corresponding value of 〈N 〉 either as 〈N 〉 = ρ2n or
by working in the canonical ensemble (i.e. at fixed N (11)) and recalling that from
Eq. (11) it follows:

N (N − 1) =
∑

s,t

ρ2g(d(s, t)) = N
n

∑

i=0

(

n

i

)

ρg(i) ⇒ N = 1 +
n

∑

i=0

(

n

i

)

ρg(i).

(27)
It is not obvious that one can find configurations of the system with density ρ that
actually produce the function g(i), see e.g., Refs. 10,13,14 for a discussion of this
issue in the case of spheres in the continuum. However, as the ρ, g(i) obtained
from the partition function (6) (or from the canonical partition function) must
satisfy conditions i)-iii), it is clear that the value of A(n, d) is smaller than the
maximum of the right hand side of Eq. (27) over all the possible choices of ρ, g(i)
satisfying the positivity conditions, i.e.

A(n, d) ≤ max

[

1 +
n

∑

i=0

(

n

i

)

ρg(i) | ρ, g(i) : i)–iii)

]

. (28)
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The problem with Delsarte’s method is that it can be used to derive arithmetically
an upper bound for finite and not too large n (e.g. n = 1000, see Ref. 5), but it is
not easy to obtain analytical results for n → ∞.

In the literature the Delsarte method has been often formulated in terms of
the function Ai = δi0 + ρ( n

i )g(i), see e.g., Refs. 5 and 6. Conditions i)–ii) are
equivalent to A0 = 1, Ai = 0 for 1 ≤ i < d and Ai ≥ 0. Condition iii) gives,
using Eqs. (16) and (17), and recalling that Fn(a, 0) = 1, Fn(0, i) = ( n

i ) and
∑n

i=0 Fn(a, i) = 2nδa0 (being the Fourier transform of the function 1):

S(a) = 1 + ρ̂h(a) = 1 +
n

∑

i=0

Fn(a, i)[ρg(i) − ρ]

= 1 +
n

∑

i=0

Fn(i, a)
(n

a

)

(

n

i

)

ρg(i) − ρ2nδa0

=
(

n

a

)−1 n
∑

i=0

Fn(i, a)

[

ρ

(

n

i

)

g(i) + δ0i

]

− ρ2nδa0

=
(

n

a

)−1 n
∑

i=0

Fn(i, a)Ai − ρ2nδa0. (29)

Thus the condition S(a) ≥ 0 is equivalent to
∑n

i=0 Fn(i, a)Ai ≥ 0 for a �= 0, while
for a = 0 we simply have

∑n
i=0 Ai = N from Eq. (27). Then the bound (28) can

be reformulated as

A(n, d) ≤ max

[

n
∑

i=0

Ai

∣

∣

∣

∣

∣

Ai ≥ 0 ∀i ; A0 = 1 ; A1 = · · · = Ad−1 = 0;

n
∑

i=0

Fn(i, a)Ai ≥ 0 ∀a

]

≡ D(n, d). (30)

Upper bounds for A(n, d) can be derived by studying the dual to the linear problem
(30), see e.g. Ref. 5. In this way one can prove that (MRRW bound(3)), for n → ∞:

D(δ) ≡ lim sup
n→∞,n/d→δ

1

n
log2 D(n, d) ≤ H

(

1

2
−

√

δ(1 − δ)

)

≡ RMRRW (δ),

(31)
that means that R(δ) verifies the same bound and

ϕ ≤ v

(

1

2
−

√

δ(1 − δ)

)

− ln 2 + v(δ) ≡ ϕMRRW (δ). (32)

This bound has been (little) improved only for δ < 0.273.(3, 5)
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By constructing an explicit solution to the positivity conditions, one can
obtain lower bounds on D(δ) (but this is not sufficient to have the same bound for
R(δ),(10, 14)). For this problem, this has been done in Ref. 6, where it was shown
that

g(i) = (d + 1)δid + θ (i − d), (33)

where θ (i − d) = 1 for i > d and 0 otherwise, verifies conditions i)-iii) up to a
density ϕS(δ) = ϕM R RW (δ)/2.

To resume, the situation is the following:

• the VG bound states that the maximum density ϕc ≥ 0;
• the MRRW bounds coming from the dual to (30) prove that ϕc <

ϕM R RW (δ), Eq. (32) (with a little improvement for δ < 0.273, see Ref. 5);
• the Delsarte’s method cannot be used to prove that the VG bound is tight,

i.e. that ϕc ≤ 0, as the lower bound on D(δ) obtained in Ref. 6 implies
that the best upper bound from Delsarte’s method cannot be smaller than
ϕM R RW (δ)/2;

• moreover, recent arithmetical results for n = 1000(5) seems to indicate that
the actual value of D(δ) might be close to the MRRW ones, i.e. much larger
then the lower bound of Ref. 6. This means that the MRRW bounds are
probably very close to the best one can obtain from the Delsarte’s method
(30).

The bounds above for ϕc (summarized in Fig. 1) leave a large gap—at least of the
order of ϕM R RW (δ)/2, but probably of the order of ϕM R RW (δ)—and there are not so
many ideas on how to improve them.(5) Note that, as discussed in the introduction,
for δ > 1/2 one can prove that R(δ) = 0, so the size of the code is not exponential.

4. THE LIQUID PHASE AT HIGH DENSITY

In this section we will discuss some insight on the problem that comes from
the physical intuition on the possible behavior of the system (6). We are not able
to present rigorous results but we hope that the discussion below will lead to new
ideas on how to rigorously improve the bounds on R(δ).

It is convenient to outline our basic ideas before going into the details of
the calculations. We try to find a solution to the HNC equations (12), (24) (or to
other approximate equations for the liquid) for ϕ > 0 (ϕ is defined in Eq. (8)).
We assume here that any resummation will be equivalent for n → ∞ as long
as it includes the ring diagrams.(7) Such a solution should clearly verify at least
the positivity conditions i)-iii). However there can be many different solutions to
these conditions that may not correspond to the high-density liquid. In particular
the solution proposed by Samorodnitsky, Eq. (33), is not suitable to describe a
liquid state, as we do not expect to observe a large number of particles in contact
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0 0,1 0,2 0,3 0,4 0,5
0

0,05

0,1

0,15

0,2

S

max

MRRW

HNC

Fig. 1. Bounds for ϕc . The VG lower bound is ϕc ≥ 0. The upper bounds ϕmax(δ) (26), dashed line,
and ϕM R RW (δ) (32), full line, are reported. The lower bound to D(δ) obtained by Samorodnitsky,
ϕS(δ) = ϕM R RW (δ)/2, is reported as a dot-dashed line. Finally, the value of ϕH NC (δ), below which
our solution for the liquid state is well defined, is reported as a dot-dashed-dashed line. (color online)

(represented by a peak at i = d) in the liquid phase. Thus we will first look for a
function g(i) verifying i)-iii), not showing large peaks and departing continuously
from the step function for ϕ ≥ 0. We will show in the following that such a
function exists up to ϕ = ϕH NC (δ) < ϕS(δ), see Fig. 1, and is indeed given by
the step function plus an exponentially small correction in n. We interpret this
solution as describing the liquid phase and show numerically that the solution of
the HNC equations converges to this solution for n → ∞.

Using the solution above we can compute the entropy of the liquid. A crucial
observation is that this entropy becomes negative for ϕ ∼ log(n)/n, i.e. very
close to the VG bound. This means that the liquid phase must become unstable
below this value of density, as the entropy of a discrete system must be positive.
We then expect that the system (6) will undergo a phase transition at a density
ϕ ≤ log(n)/n.

This behavior closely resembles the behavior of hard spheres in the continuum
in the limit of large space dimension. For this problem, we recently showed(9) that
at a value of density close to the radius of convergence of the virial expansion (i.e.
to the VG value) the liquid phase becomes unstable towards a glass phase where
replica symmetry is broken. In the glass phase the pressure rapidly increases and
diverges at a maximum density (for the glass) which is found to be of the same
order of the glass transition density.
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By analogy with the problem in the continuum, we argue that also in this
problem a glass transition exists at a density ϕK ≤ log(n)/n and that the glass
phase should exist up to a maximum density with the same scaling in n. This
means that, if no other phases exist, one should have ϕc ∼ log(n)/n, i.e. the VG
bound should be tight. Unfortunately we are still not able to repeat the calculation
of the equation of state of the glass—that was done in Ref. 9 for the problem in
the continuum—for this problem; but we believe that the computation is feasible
and we leave it for future work.

Clearly other phases may exist at least for some special values of n, d. For
instance, we have some numerical evidence, for even d, of a first-order phase tran-
sition toward a phase in which particles only occupy a subspace of the Hamming
space. We will discuss this issue below.

In the following we will try to make these arguments more precise.

4.1. The Fourier Transform for n → ∞
We begin by studying the properties of the Fourier transform of the delta

function g( j) = δi j , that is simply Fn(a, i), for n → ∞. We define k = a/n and
x = i/n. We want to compute the function f (k, x) defined by


(k, x) = Fn(nk, nx) ∼ Re en f (k,x), n → ∞. (34)

Using the fact that the poles of the gamma function �(z) are in z = −k with
residual (−1)k/k!, we can rewrite Eq. (16) as

Fn(a, i) =
∫

C
dz�(z)

�(a + 1)�(n − a + 1)

�(a + z + 1)�(i + z + 1)�(n − a − i − z + 1)
, (35)

where the contour C embraces the negative part of the real z axis, see Fig. 2.
Using the Stirling formula �(n) ∼ nne−n

√
2πn, we get, changing the integration

A

B

D E

C

k

x

0

1

1

C C’

+

Fig. 2. Left: the domain in the plane (k, x) where the saddle points (38) are complex is represented by
region A. Right: deformation of the integration contour to include the saddle point ζ− (this plot refers
to region B, see text).
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variable to ζ = z/n, and neglecting power-law prefactors,

Fn(nk, nx) =
∫

C
dζ en[ζ log ζ−v(k)−(k+ζ ) log(k+ζ )−(x+ζ ) log(x+ζ )−(1−k−x−ζ ) log(1−k−x−ζ )]

=
∫

C
dζ enσ (ζ ), (36)

and we can evaluate the integral using the saddle point method. The saddle point
equation is

ζ (1 − k − x − ζ )

(k + ζ )(x + ζ )
= 1, (37)

with solutions

ζ± = 1

2

[

1

2
− k − x

]

± 1

2

√

(

k − 1

2

)2

+
(

x − 1

2

)2

− 1

4
. (38)

From the analysis of the position of the solutions in the complex plane one
can deduce the following:

1. In the region
(

k − 1
2

)2 + (

x − 1
2

)2 − 1
4 ≤ 0 (region A in Fig. 2) the solu-

tions are complex, and ζ+ = ζ ∗
−, σ (ζ+) = [σ (ζ−)]∗. Thus one has

Fn(nk, nx) ∼ enσ (ζ−) + enσ (ζ+) = Re enσ (ζ−) ∼ enRe σ (ζ−) cos[nIm σ (ζ−)]

⇒ f (k, x) = σ (ζ−). (39)

2. In region B of Fig. 2 the saddle points are real and positive with 0 ≤ ζ− ≤
ζ+, and σ (ζ±) are also real with σ (ζ+) > σ (ζ−) > 0. The point ζ− is then
the closest saddle point to the original integration contour; moreover, it is
a local mimimum of σ (ζ ) along the real axis, so it is a maximum of σ (ζ )
along the imaginary direction and the integration path can be deformed
to include it without crossing regions of ζ where Re σ (ζ ) > σ (ζ−), see
Fig. 2. Then

Fn(nk, nx) ∼ enσ (ζ−) ⇒ f (k, x) = σ (ζ−). (40)

3. The behavior in the regions C,D,E can be obtained using the symmetries
(18), (19), (20). Alternatively one can always choose the closest saddle
point to the integration path that is a local minimum on the real axis: it
turns out that one has to choose ζ− in the region E and ζ+ in the regions
C and D. With this choice the symmetries (18), (19), (20) are respected.

Finally one obtains

f (k, x) = min
Re

[σ (ζ+), σ (ζ−)], (41)
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Fig. 3. The function Re f (k, x) for different values of k as a function of x ; from top to bottom
k = 0.1, 0.2, 0.3, 0.4, 0.5. Recall that from Eq. (18) Re f (k, x) = Re f (1 − k, x).

where minRe means that one has to take the solution with the smallest real part.
The real part of the resulting function f (k, x) is an increasing function of x for
all k and x < 1/2, see Fig. 3. This allows to compute the Fourier transform of the
theta function θ (d − i) for d < n/2. Defining fx (k, x) = ∂x f (k, x), we have

̂θδ(nk) =
n

∑

i=0

Fn(nk, i)θ (d − i) ∼ nRe
∫ δ

0
dx en f (k,x) ∼ nRe

×
∫ δ

0
dx en[ f (k,δ)+ fx (k,δ)(x−δ)+···] ∼ Re

en f (k,δ)

fx (k, δ)
∼ 
(k, δ), (42)

i.e. the Fourier transform of the theta coincides with the one of the delta to leading
order in n as long as d < n/2. Similarly we can compute the Fourier transform of
a function that vanishes outside a finite interval and approaches zero linearly at
the edge of the interval, i.e. h(i) = θ (d − i)(d − i):

̂h(nk) ∼ n2Re
∫ δ

0
dx en f (k,x)(δ − x) ∼ n2Re

∫ δ

0
dx en[ f (k,δ)+ fx (k,δ)(x−δ)+···](δ − x)

∼ Re en f (k,δ) 1

[ fx (k, δ)]2
∼ 
(k, δ), (43)

i.e. to leading order in n also this function is equal to 
(k, δ).
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4.2. HNC for n → ∞
We argue that for n → ∞ the solution to the HNC equation approaches a

solution of conditions i)-iii) which shows no large peaks. In particular we will
look for a solution of the form g(i) = θ (i − d + 1)[1 + exp(n˜h(i))], ˜h(i) ≤ 0, i.e.
a solution differing from the step function (that describes the liquid for ϕ < 0) by
an exponentially small quantity. Conditions i)-iii) are, for x = i/n and k = a/n,
and recalling that h(i) = g(i) − 1,

⎧

⎪

⎨

⎪

⎩

ρ̂h(k) ≥ −1,

h(x) ≥ −1,

h(x) = −1, x ≤ δ.

(44)

First we will check that for ϕ < 0 the step function g(x) = θ (x − δ), i.e. h(x) =
−θ (δ − x), satisfies the conditions above. Using Eqs. (10) and (42),

ρ̂h(k) = −ρ
(k, δ) ≥ −1 ⇔ Re en[ϕ−v(δ)+ f (k,δ)]

= en[ϕ−v(δ)+Re f (k,δ)] cos[nIm f (k, δ)] ≤ 1, (45)

and the latter relation is equivalent to

Re f (k, δ) ≤ v(δ) − ϕ. (46)

In Fig. 4 the function Re f (k, δ) is reported as a function of k for a representative
value of δ. It assumes its maximum in k = 0 and k = 1 and f (0, δ) = v(δ). Thus the

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0  0.2  0.4  0.6  0.8  1

Re f(k,0.1)
v(0.1)

v(0.1)-0.05

Fig. 4. The function Re f (k, δ) as a function of k for δ = 0.1. The value of v(δ) and of v(δ) − 0.05
are also reported. The value of k such that Re f (k, δ) intersects v(δ) − ϕ is the value of kc(δ, ϕ), see
Eq. (53).
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inequality (46) is always satisfied if ϕ ≤ 0, so that in this region (which is also the
region where the virial series converges) we argue that h(x) = −θ (δ − x) describes
the liquid phase for n → ∞. This can also be checked by a direct evaluation of
the leading terms in the (convergent) virial series, see Ref. 7. Following(7) we also
argue that the HNC resummation contains all the relevant diagrams for ϕ < 0, so
we can use it to obtain the free energy of the liquid. Substituting the result for
h(x) in Eq. (23) the last term is exponentially small in n and one obtains, up to
exponentially small corrections,

�(ρ) = −S(ρ) = ρVd

2
+ ln ρ − 1,

˜P ≡ P

ρ
= ρ

d�

dρ
= 1 + ρ̃

2
, (47)

where ˜P is the reduced pressure. As found in Ref. 7 we find that the entropy is given
by the ideal gas term plus the first virial correction. Note that ρ̃ is exponentially
small for ϕ < 0 so the system behaves essentially as an ideal gas.

For ϕ > 0 the function h(x) cannot be given by −θ (δ − x) as this function
does not respect the positivity conditions (44). We follow the strategy of Ref. 8
and decompose h(x) = h0(x) + h1(x) assuming that h0(x) vanishes for x > δ

and h1(x) is a continuous function of x . We call Y ≡ h1(δ) = −1 − h0(δ−), i.e.
h0(δ−) = −(1 + Y ). As h0(x) vanishes for x > δ, its Fourier transform is given
by (42):

̂h0(k) = −(1 + Y )
(k, δ), (48)

and the condition ρ̂h(k) = ρ̂h0(k) + ρ̂h1(k) ≥ −1 becomes

̂h1(k) ≥ − 1

ρ
+ (1 + Y )
(k, δ). (49)

We choose the simplest solution to the previous equation,

̂h1(k) =
{− 1

ρ
+ (1 + Y )
(k, δ) for − 1

ρ
+ (1 + Y )
(k, δ) ≥ 0,

0 for − 1
ρ

+ (1 + Y )
(k, δ) < 0,
(50)

and we will show that it gives, in real space, an exponentially small correction
with respect to the step function. The function ̂h1(k) has a two singularities when

(1 + Y )ρ
(k, δ) = 1 ⇔ ϕ − v(δ) + f (k, δ) + 1

n
ln(1 + Y ) = 0, (51)

but the above equation is well defined only if its solutions lie in the region where
f (k, δ) is real, otherwise the function 
(k, δ) will oscillate very fast. This will
impose some restrictions to the values of ϕ and d.

First we will restrict to odd d in order to have the symmetry 
(1 − k, δ) =

(k, δ); for even d we have the opposite symmetry 
(1 − k, δ) = −
(k, δ) and
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f (k, δ) has an imaginary part for k > 1/2. This follows from 
(k, δ) = Fn(a, d)
(with a = nk and d = nδ) and from Eq. (18). For odd d Eq. (51) will have
two solutions kc, 1 − kc due to the symmetry, see Fig. 4. Note that the opposite
restriction was applied in the numerical computation of Ref. 5 where only the case
of even d has been considered.

Next, we look for a solution kc outside the region A of Fig. 2, as in region A
we already know that f (k, δ) is not real. This means that the maximum possible
value for kc is

kmax(δ) = 1

2
−

√

1

4
−

(

δ − 1

2

)2

= 1

2
−

√

δ(1 − δ), (52)

that is the boundary of the region where f (k, δ) is real, see Fig. 2.
As we will self-consistently verify at the end, under the restrictions above one

has Y ∼ e−nκ , then Eq. (51) becomes

f (k, δ) = v(δ) − ϕ. (53)

For ϕ ≤ 0 it has no solutions as discussed above, so ̂h1(k) = 0, then h1(x) = 0,
Y = 0 and we recover the step function solution. For ϕ > 0, kc increases from 0
to kmax(δ) and reaches the boundary of region A, using Eq. (53), exactly at

ϕ = v(δ) − f (kmax(δ), δ) = ϕM R RW (δ)/2 = ϕS(δ), (54)

where ϕM R RW (δ) has been defined in Eq. (32).
We have now to compute h1(x) from ̂h1(k). The function ̂h1(k) verifies

̂h1(k) = ̂h1(1 − k) and is nonzero only for k < kc and k > 1 − kc; it vanishes
linearly close to kc, ̂h1(k) ∼ (1 + Y )
k(kc, δ)(k − kc), and 
k(k, δ) = ∂k
(k, δ)
is real in k = kc. If we restrict to even i , we have also 
(x, k) = 
(x, 1 − k) by
symmetry (19). We can do that because it is possible to show that, in the case
of odd d that we are considering, one has h(i − 1) = h(i) for even i ; thus it is
enough to compute h(i) for even i (see the next section, Appendix A and Fig. 6
for a detailed discussion of this tricky point). Using Eq. (43) we have then

h1(x) = 2n

2n

∫ 1/2

0
dk 
(x, k)̂h1(k) ∼ 2n

2n
(1 + Y )en f (kc,δ)n fk(kc, δ) Re

×
∫ kc

0
dk en f (x,k)(k − kc) ∼ 1 + Y

2n−1
en f (kc,δ) Re en f (x,kc) fk(kc, δ)

[ fx (x, kc)]2
.

(55)

Keeping only the leading terms (exponentials of n) we obtain the self consistency
equation for Y :

Y = h1(δ) = (1 + Y )en[ f (kc,δ)+ f (δ,kc)−ln 2]. (56)
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If kc < kmax we have f (kc, δ) + f (δ, kc) − ln 2 < 0, so that Y is exponentially
small and is given by

Y = en[ f (kc,δ)+ f (δ,kc)−ln 2] = en[v(δ)+v(kc)−2ϕ−ln 2]. (57)

where we used the relation f (x, k) = f (k, x) + v(k) − v(x) that follows from
Eq. (17) and Eq. (53). Finally, the function ̂h(k) = ̂h0(k) +̂h1(k) is given, using
Eq. (50) and Y � 1, by

ρ̂h(k) =
{−1 for k < kc and k > 1 − kc,

−ρ
(k, δ) for kc < k < 1 − kc.
(58)

We can rewrite Eq. (55) using Y � 1, neglecting non-exponential prefactors, and
recalling that f (kc, δ) = v(δ) − ϕ, as

h1(x) = en[v(δ)−ϕ]

2n

(x, kc) = 1

ρ

1

2n

(x, kc) ; (59)

note that from Eq. (16) it follows that 2−n
(x, kc) is the Fourier transform of
δ(k − kc). Finally, h(x) is given, from Eq. (55), by

h(x) =
{

−1 x < δ,

Re en˜h(x) x ≥ δ,

˜h(x) = v(δ) − ϕ + f (x, kc) − ln 2. (60)

The solution above is defined up to the value ϕS of the density given by Eq. (54).
Indeed, the solution kc of Eq. (51) is given by Eq. (53) only if it is in the region
where f (k, δ) is real. Otherwise, oscillations are present in 
(k, x) and the solution
is not well defined. Moreover, if Y is not exponentially small again the solution
above fails. Both these conditions seem to be violated for ϕ > ϕS(δ).

There is however another condition to be imposed, namely that ˜h(x) ≤ 0;
otherwise the solution will be exponentially large and again we do not expect that
for a liquid phase. The maximum of ˜h(x) is attained in x = 0, x = 1, and is given
by v(δ) + v(kc) − ϕ − ln 2. The condition ˜h(x) ≤ 0 then requires

v(δ) + v(kc) − ϕ − ln 2 ≤ 0. (61)

A numerical solution of the previous equation (recall that kc depends implicitly on
ϕ) gives the stability threshold ϕH NC (δ), which is reported in Fig. 1. For ϕ ≥ ϕH NC

our solution starts to exhibit diverging oscillations at large x . This is observed also
in the numerical solution of the HNC equations, see below. Above ϕS(δ) either
the solution does not exist anymore or it yields a value of Y that is exponentially
diverging with n. In both cases the solution does not describe a liquid phase. We
will see however that we are not really interested in so high values of the density
as the liquid phase becomes unstable at a much lower density.
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4.3. HNC Entropy

The HNC free energy is the canonical free energy, that for hard spheres is
simply −S(ρ). For ϕ ≤ 0 it is given by Eq. (47), and we showed that for ϕ > 0
only exponentially small corrections appear. Neglecting these corrections we have
from Eq. (47)

S(ρ) = 1 − log ρ − 1

2
ρVd ∼ 1 − nϕ

+ nv(δ) − 1

2
log[2πδ(1 − δ)] − 1

2
log n − 1

2
enϕ, (62)

in the full range ϕ < ϕH NC (δ). An interesting observation is that S(ρ) becomes
negative at a value of density given by, keeping only the leading terms,

S(ϕ) ∼ −nϕ + nv(δ) − 1

2
log n − 1

2
enϕ = 0, (63)

and the solution is, at first order in n → ∞,

ϕ0 = 1

n
log[2nv(δ) − 3 log n]. (64)

As for a discrete system S(ϕ) ≥ 0, this means that the liquid phase must become
unstable at a density ϕ < ϕ0 ∼ log(n)/n.

4.4. Numerical Solution of the HNC Equations

We will now compare the asymptotic solution with a numerical solution of
the HNC Eqs. (24). The latter are solved using a standard iterative algorithm. For
graphical convenience we report the function 1

n log |ρ̂h(k)|, that from Eq. (58) is
given by

lim
n→∞

1

n
log |ρ̂h(k)|

=
{

0 for k < kc and k > 1 − kc,

Re f (k, δ) + ϕ − v(δ) + 1
n log | cos nIm f (k, δ)| for kc < k < 1 − kc.

The last term is nonzero only for k ∈ [kmax(δ), 1 − kmax(δ)] and gives rise to oscilla-
tions whose frequency increases on increasing n. Moreover at the values of k where
cos nIm f (k, δ) = 0 the last term diverges. These values accumulate in the interval
k ∈ [kmax(δ), 1 − kmax(δ)] for large n. However, for the relativaly small values of
n considered here, the are no integer values of a = nk where cos nIm f (k, δ) = 0
and we can compare the function 1

n log |ρ̂h(k)| with its asymptotic limit neglecting
the last term. Moreover we can compare h(i) with the analytical expression (60).
The comparisons are encouraging as shown in Fig. 5. We find that ̂h(k) agrees
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Fig. 5. Comparison of the numerical solution of the HNC equations with the asymptotic solution of the
positivity conditions. Left: The function ln[|ρ̂h(k)|]/n obtained numerically is reported as a function
of k for n = 36 and d = 11 (i.e. δ = 0.305) and ϕ = 0, 0.05, 0.1. The lines are obtained from Eq. (65).
Right: The function h(i) for n = 36, d = 11 and ϕ = 0, 0.05, 0.1, 0.12. At large ϕ we start to observe
diverging oscillations at high values of i , see text. (color online)

well with Eq. (58) and, for small ϕ, h(i) is essentially the step function plus a
small corrrection. On increasing the density large oscillations appear at large i ,
as predicted by Eq. (60). Unfortunately a quantitative comparison of h(i) with the
asymptotic expression requires either the evaluation of finite n corrections, due to
the small values of n we can investigate numerically, or the (difficult) investigation
of much larger values of n, see e.g. Ref. 5.

4.5. Is There a Glass Transition?

The fact that the entropy becomes negative seems to indicate the existence of
a phase transition. By analogy with the continuum problem, where we showed that
a glass transition happens at a similar value of the density,(9) we can conjecture
that a glass transition will happen also in this problem.

If this is the case, one can show by general arguments and by analogy with the
continuum problem that Sglass(ϕ) ≤ Sliquid(ϕ) (this is because a downward jump
of the compressibility is expected at the glass transition(15)). This means that the
entropy of the glass will vanish at a density ϕ < ϕ0 ∼ log(n)/n. Then both the
liquid and the glass phase will disappear for ϕ ∼ log(n)/n. If there are no other
phases (such as a “crystal”), this scenario indicates that the Varshamov-Gilbert
bound should give asymptotically the exact result.

Note also that the correlation function used by Samorodnitsky, Eq. (33) is
similar to the one we expect for the glass phase (see the discussion in Refs. 9 and
15). This means that, if the picture above is correct, the g(i) in Eq. (33) should
correspond to realizable packings only up to a density ϕ ∼ log(n)/n. We hope that
further work will clarify this issue, see also the discussion in Refs. 10 and 14.
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4.6. Other Instabilities

We would like now to consider a different instability of the liquid that is
observed for even d. Indeed, d is the smallest possible distance between any pair
of spheres. Let us split the Hamming space H n

2 into two spaces H n
2 = H n

e ∪ H n
o ,

where H n
e ≡ {s ∈ H n

2 |d(s, 0) is even} and H n
o ≡ {s ∈ H n

2 |d(s, 0) is odd}. Recall
that ρg(i) = ρ[1 + h(i)] is the probability of finding a particle in a given point at
distance i from the origin, given that there is a particle in the origin.

At high density, given that there is a sphere s0 in the origin, it will be
convenient, say, to place the second sphere s1 at the minimum distance d, thus
s1 ∈ H n

e . Then we can put another sphere s2 at minimum distance d from s1, so
that s2 ∈ H n

e , and so on. It is clear that this picture is oversimplified but still we
can expect that at large enough density particles will concentrate on one of the
subsets H n

e,o, depending whether there is or not a particle in the origin.
This is indeed what we found in the solution of the HNC equations. The

partial localization of the particles on a subset H n
e,o is revealed by oscillations in

h(i), which is much bigger on the even values of i , see Fig. 6. The oscillations
in h(i) are related to a strong peak developping in S(a) = 1 + ρ̂h(a) for a = n
on increasing ϕ above 0. Due to this growing peak, the HNC equations rapidly
become unstable for small values of ϕ (much smaller than for odd d). Preliminary
Montecarlo simulations seems to indicate the existence of a first order phase
transition to a phase in which particles are completely localized on a sublattice at
a critical value of ϕ.

For odd d a related phenomenon occurs. Indeed, by looking at the correlation
function h(i) for odd d (see right panel in Fig. 6), the correlation function decays
in steps of two. This can be understood by the following argument. Consider a
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Fig. 6. Left: correlation function h(i) for n = 36, d = 10 and ϕ = 0, 0.016. Inset: structure factor
S(a) = 1 + ρ̂h(a) for the same values of the parameteres. On increasing ϕ above ϕ = 0 strong oscil-
lations appear in h(i), related to a strong peak in S(a) for a = 36. Right: same plot for n = 36, d = 11
and ϕ = 0, 0.05. In this case the oscillations are absent, S(a) has a different behavior for large a, and
h(i) decays in steps of two. The different (approximate) symmetry of S(a) is related to the symmetry
(18). (color online)
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system of sequences s ′ ≡ (s, sn+1) ∈ H n+1
e , i.e. with the constraint that d ′(s ′, 0) is

even, where d ′(s ′, 0) = d(s, 0) + sn+1 is the distance in the Hamming space H n+1
2 .

This constraint fixes the last bit sn+1: as sn+1 = 0 if d(s, 0) is even and sn+1 = 1
if d(s, 0) is odd. If we consider in the original space H n

2 a sphere at distance
d(s, 0) = i with i odd we have d ′(s ′, 0) = i + 1, but also if d(s, 0) = i + 1 we
have d ′(s ′, 0) = i + 1. Thus, spheres at distance i and i + 1 with i odd have the
same distance i + 1 (even) from the origin in H n+1

2 .
This means that the original problem on H n

2 with minimum distance d odd
can be mapped into a problem on H n+1

e with d ′ = d + 1 even. However, in the
new problem, particles that were at a distance i and i + 1 from the (old) origin
(for odd i) are at the same distance from the (new) origin, thus the probability to
have a particle at distance i (odd) and i + 1 in the original problem, given that
there is a particle in the origin, should be the same.

Note that the argument cannot be repeated for even d as in this case we
should map the problem into a problem on H n+1

e with distance d ′ odd, and this is
inconsistent as discussed above.

5. CONCLUSIONS

We discussed the high-density behavior of a system of hard spheres on the
hypercube H n

2 from a physical point of view, trying to understand the mechanisms
that determine the maximum density of the system.

First we found a possible asymptotic solution for the liquid correlation in
the limit n → ∞, and we showed that this solution yields a negative entropy
for ϕ ∼ log(n)/n, i.e. for a number of particles N ∼ 2n

Vd−1
n, very close to the

Varshamov-Gilbert lower bound.
On this ground we argue that a phase transition must exist towards a different

phase. The nature of this transition is still unknown, but we presented some
arguments in favor of a glass transition (basically, the analogy with the problem
of hard spheres in R

n for n → ∞(9)) and for a first order transition toward a
phase in which the particles are constrained to a sublattice H n

o,e for even d (some
insight from the solutions of the HNC equations and from preliminary Montecarlo
simulations).

Both these possibilities require further investigation. In particular, the study
of the glass transition requires the computation of the replicated partition function
of the system following.(9, 15) This is more difficult in this discrete problem as we
cannot make a Gaussian ansatz for the single particle density. The study of the
first order transition will require more extensive numerical simulations.

Moreover, there is also the possibility that, at least for some particular values
of n and d, some particular “crystal-like” configurations of high density exist.
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Unfortunately, our approach is based on a low density expansion (the virial series)
so it is unable to capture the existence of such special configurations.

The results presented here are not conclusive but in our opinion may lead to
new ideas on how to improve the current bounds on R(δ). We hope, in particular,
that future work will clarify whether a glass transition exist or not in this system.

APPENDIX A:

More on symmetries

We will discuss here the reason why we must restrict to even values of i in
computing h1(x), see Eq. (55). As we discussed in Sec. 3 for odd d the function
h(i) has the property that h(i − 1) = h(i) for even i . This is a consequence of a
hidden symmetry, namely the possibility to map the problem in H n

2 in a problem
in H n+1

e .
It can be shown that if h(i) has such a symmetry, its Fourier transform

̂h(a) has the symmetry ̂h(a) = ̂h(n − a + 1), a = 1, · · · , n, due to the structure
of the matrix Fn(a, i). This is consistent with the observation that in the limit
n → ∞ with a = nk, ̂h(k) = ̂h(1 − k), as comes out from Eq. (58). However we
are discarding a factor 1/n.

When inverting the Fourier transform to recover h(i), we find that if i is
even we get a meaningful result, while if i is odd, the symmetry ̂h(k) = ̂h(1 − k),
if interpreted as ̂h(a) = ̂h(n − a) leads simply to h(i) = 0 due to the symmetry
(18). The direct computation of h(i) for odd i would require a more refined
calculation, however it is much simpler to compute h(i) for even i and use the
identity h(i − 1) = h(i).

This procedure seems to produce meaningful results as evidenced by the
positive agreement with numerical data, see Fig. 5.
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